
aiocouch
Release 3.0.0

Mario Bielert

Aug 25, 2023

CONTENTS

1 Key features 3

2 Library installation 5

3 Getting started 7

4 Tutorial 9

5 Source code 11

6 Dependencies 13

7 Authors and License 15

8 Table of contents 17

9 Indices and tables 37

Python Module Index 39

Index 41

i

ii

aiocouch, Release 3.0.0

Asynchronous CouchDB client library for asyncio and Python.

Current version is 3.0.0.

CONTENTS 1

aiocouch, Release 3.0.0

2 CONTENTS

CHAPTER

ONE

KEY FEATURES

• All requests are asynchronus using aiohttp

• Supports CouchDB 2.x and 3.x

• Support for modern Python 3.7

3

aiocouch, Release 3.0.0

4 Chapter 1. Key features

CHAPTER

TWO

LIBRARY INSTALLATION

pip install aiocouch

5

aiocouch, Release 3.0.0

6 Chapter 2. Library installation

CHAPTER

THREE

GETTING STARTED

The following code retrieves and prints the list of incredients of the apple_pie recipe. The incredients are
stored as a list in the apple_pie Document, which is part of the recipe Database. We use the context manager
CouchDB to create a new session.

from aiocouch import CouchDB

async with CouchDB(
"http://localhost:5984", user="admin", password="admin"

) as couchdb:
db = await couchdb["recipes"]
doc = await db["apple_pie"]
print(doc["incredients"])

We can also create new recipes, for instance for some delicious cookies.

new_doc = await db.create(
"cookies", data={"title": "Granny's cookies", "rating": ""}

)
await new_doc.save()

#

7

aiocouch, Release 3.0.0

8 Chapter 3. Getting started

CHAPTER

FOUR

TUTORIAL

You can find a more in-depth discussion of the core concepts and next steps at the Introduction page.

9

aiocouch, Release 3.0.0

10 Chapter 4. Tutorial

CHAPTER

FIVE

SOURCE CODE

The project is hosted on GitHub.

Please feel free to file an issue on the bug tracker if you have found a bug or have some suggestion in order to improve
the library.

The library uses GitHub Actions for Continuous Integration.

11

https://github.com/metricq/aiocouch
https://github.com/metricq/aiocouch/issues
https://github.com/metricq/aiocouch/actions

aiocouch, Release 3.0.0

12 Chapter 5. Source code

CHAPTER

SIX

DEPENDENCIES

• Python 3.7+

• aiohttp

• Deprecated

13

aiocouch, Release 3.0.0

14 Chapter 6. Dependencies

CHAPTER

SEVEN

AUTHORS AND LICENSE

The aiocouch package is written mostly by Mario Bielert.

It’s BSD 3-clause licensed and freely available.

Feel free to improve this package and send a pull request to GitHub.

15

https://github.com/metricq/aiocouch

aiocouch, Release 3.0.0

16 Chapter 7. Authors and License

CHAPTER

EIGHT

TABLE OF CONTENTS

8.1 Introduction

This short tutorial will give you an overview of the aiocouch library.

You can directly jump to particular sections using the Navigation on the left.

8.2 Session

Every request to the CouchDB server is embedded into a session. A session is represented by an instance of aiocouch.
CouchDB. A session can be created using the constructor of the class or by using the class as a context manager.

8.2.1 Examples

Create a session with the context manager

async with aiocouch.CouchDB("http://localhost") as couchdb:
await couchdb.check_credentials()

Note that the session will be closed, once the scope of the with statement is left.

A session can also be handled using variables. The session needs to be closed manually.

couchdb = aiocouch.CouchDB("http://localhost")
await couchdb.check_credentials()
await couchdb.close()

8.2.2 Reference

class aiocouch.CouchDB(*args, **kwargs)
CouchDB Server Connection Session

The

Parameters

• server (str) – URL of the CouchDB server

• user (str) – user used for authentication

• password (str) – password for authentication

17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

aiocouch, Release 3.0.0

• cookie (str) – The session cookie used for authentication

• kwargs (Any) – Any other kwargs are passed to aiohttp.ClientSession

await __getitem__(id)
Returns a representation for the given database identifier

Raises
NotFoundError – if the database does not exist

Parameters
id (str) – The identifier of the database

Return type
Database

Returns
The representation of the database

await check_credentials()

Check the provided credentials.

Raises
UnauthorizedError – if provided credentials aren’t valid

Return type
None

await close()

Closes the connection to the CouchDB server

Return type
None

await create(id, exists_ok=False, **kwargs)
Creates a new database on the server

Raises
PreconditionFailedError – if the database already exists and exists_ok is False

Parameters

• id (str) – the identifier of the database

• exists_ok (bool) – If True, don’t raise if the database exists

Return type
Database

Returns
Returns a representation for the created database

await info()

Returns the meta information about the connected CouchDB server.

See also GET /.

Return type
Dict[str, Any]

Returns
A dict containing the response json.

18 Chapter 8. Table of contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.couchdb.org/en/stable/api/server/common.html#get--
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

aiocouch, Release 3.0.0

await keys(**params)
Returns all database names

Return type
List[str]

Returns
A list containing the names of all databases on the server

8.3 Databases

Once you have established a session with the server, you need a Database instance to access the data. A Database
instance is an representation of a database on the server. Database instances allow to access Document instances. Also,
Database instances can be used to configure the user and group permissions.

8.3.1 Getting a Database instance

While the constructor of the Database class can be used to get a representation of a specific database, the canonical
way to get an instance are the member functions of the CouchDB class.

The following code returns an instance for the animals database.

animals = await session["animals"]

aiocouch only allows to get an instance for a database that exists on the server.

8.3.2 Creating new databases

To create a new database on the server, the create() method of the session object is used.

animals = await session.create("animals")

By default, aiocouch only allows to use the create method for a database that does not exist on the server.

8.3.3 Listing documents

The _all_docs view allows to retrieve all documents stored in a given database on the server. aiocouch also exposes
this view as methods of the database class.

The method docs() allows to retrieve documents by a list of ids or all documents with ids matching a given prefix.
Similar to a dict, all documents of a database can be iterated with the methods akeys(), and values().

To perform more sophisticated document selections, the method find() allows to search for documents matching the
complex selector syntax of CouchDB.

8.3. Databases 19

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-all-docs
https://docs.couchdb.org/en/stable/api/database/find.html#find-selectors

aiocouch, Release 3.0.0

8.3.4 Reference

class aiocouch.database.Database(couchdb, id)
A local representation for the referenced CouchDB database

An instance of this class represents a local copy of a CouchDB database. It allows to create and retrieve Document
instances, as well as the iteration other many documents.

Variables
id – the id of the database

Parameters

• couchdb (CouchDB) – The CouchDB connection session

• id (str) – the id of the database

await __getitem__(id)
Returns the document with the given id

Raises
NotFoundError – if the given document does not exist

Parameters
id (str) – the name of the document

Return type
Document

Returns
a local copy of the document

async for ... in akeys(**params)
A generator returning the names of all documents in the database

Parameters
params (Any) – passed into aiohttp.ClientSession.request()

Return type
AsyncGenerator[str, None]

Returns
returns all document ids

property all_docs: AllDocsView

Returns the all_docs view of the database

Returns
Description of returned object.

async for ... in changes(last_event_id=None, **params)
Listens for events made to documents of this database

This will return DeletedEvent and ChangedEvent for deleted and modified documents, respectively.

See also /db/_changes.

For convenience, the last-event-id parameter can also be passed as last_event_id.

Return type
AsyncGenerator[BaseChangeEvent, None]

20 Chapter 8. Table of contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession.request
https://docs.python.org/3/library/typing.html#typing.AsyncGenerator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.couchdb.org/en/stable/api/database/changes.html#api-db-changes
https://docs.python.org/3/library/typing.html#typing.AsyncGenerator
https://docs.python.org/3/library/constants.html#None

aiocouch, Release 3.0.0

await create(id, exists_ok=False, data=None)
Returns a local representation of a new document in the database

This method will check if a document with the given name already exists and return a Document instance.

This method does not create a document with the given name on the server. You need to call save() on
the returned document.

Raises
ConflictError – if the document does not exist on the server

Parameters

• id (str) – the name of the document

• exists_ok (bool) – If True, do not raise a ConflictError if an document with the given
name already exists. Instead return the existing document.

• data (Optional[Dict[str, Any]]) – Description of parameter data. Defaults to None.

Return type
Document

Returns
returns a Document instance representing the requested document

async with create_docs(ids=[])
Create documents in bulk.

See Bulk operations.

Parameters
ids (List[str]) – list of document ids to be created

Return type
AbstractAsyncContextManager[BulkCreateOperation]

Returns
A context manager for the bulk operation

await delete()

Delete the database on the server

Send the request to delete the database and all of its documents.

Return type
None

async for ... in docs(ids=None, create=False, prefix=None, include_ddocs=False, **params)
A generator to iterator over all or a subset of documents in the database.

When neither of ids nor prefix are specified, all documents will be iterated. Only one of ids and prefix
can be specified. By default, design documents are not included.

Parameters

• ids (Optional[List[str]]) – Allows to iterate over a subset of documents by passing a
list of document ids

• create (bool) – If True, every document contained in ids, which doesn’t exist, will be
represented by an empty Document instance.

• prefix (Optional[str]) – Allows to iterator over a subset of documents by specifying a
prefix that the documents must match.

8.3. Databases 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

aiocouch, Release 3.0.0

• include_ddocs (bool) – Include the design documents of the database.

• params (Any) – Additional query parameters, see CouchDB view endpoint.

Return type
AsyncGenerator[Document, None]

async for ... in find(selector, limit=None, **params)
Fetch documents based on search criteria

This method allows to use the _find endpoint of the database.

This method supports all request parameters listed in _find.

Note: As this method returns Document s, which contain the complete data, the fields parameter is not
supported.

Parameters
selector (type) – See selectors

Return type
AsyncGenerator[Document, None]

Returns
return all documents matching the passed selector.

await get(id, default=None, *, rev=None)
Returns the document with the given id

Raises

• NotFoundError – if the given document does not exist and default is None

• BadRequestError – if the given rev of the document is invalid or missing

Parameters

• id (str) – the name of the document

• default (Optional[Dict[str, Any]]) – if default is not None and the document does not
exist on the server, a new Document instance, containing default as its contents, is returned.
To create the document on the server, save() has to be called on the returned instance.

• rev (Optional[str]) – The requested rev of the document. The requested rev might not
or not anymore exist on the connected server.

Return type
Document

Returns
a local representation of the requested document

await index(index, **kwargs)
Create a new index on the database

This method allows to use the _index endpoint of the database.

This method supports all request parameters listed in _index.

Parameters

• index (Dict[str, Any]) – JSON description of the index

22 Chapter 8. Table of contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.couchdb.org/en/stable/api/ddoc/views.html#api-ddoc-view
https://docs.python.org/3/library/typing.html#typing.AsyncGenerator
https://docs.python.org/3/library/constants.html#None
https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find
https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find
https://docs.python.org/3/library/functions.html#type
https://docs.couchdb.org/en/stable/api/database/find.html#find-selectors
https://docs.python.org/3/library/typing.html#typing.AsyncGenerator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find-index
https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find-index
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

aiocouch, Release 3.0.0

• kwargs (Any) – additional parameters, refer to the CouchDB documentation

Return type
Dict[str, Any]

Returns
The response of the CouchDB _index endpoint

await info()

Returns basic information about the database

See also GET /{db}.

Returns
Description of returned object.

Return type
def

async with update_docs(ids=[], create=False)
Update documents in bulk.

See Bulk operations.

Parameters

• ids (List[str]) – list of affected documents, defaults to []

• create (bool) – [description], defaults to False

Return type
AbstractAsyncContextManager[BulkUpdateOperation]

Returns
A context manager for the bulk operation

async for ... in values(**params)
Iterates over documents in the database

See docs().

Return type
AsyncGenerator[Document, None]

class aiocouch.event.BaseChangeEvent(json)
The base event for shared properties

property id: str

Returns the id of the document

json: Dict[str, Any]

The raw data of the event as JSON

property rev: str

Returns the new rev of the document

property sequence: str

Returns the sequence identifier of the event

class aiocouch.event.ChangedEvent(json, database)
This event denotes that the document got modified

8.3. Databases 23

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.couchdb.org/en/stable/api/database/common.html#get--db
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.AsyncGenerator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

aiocouch, Release 3.0.0

database: Database

The database for reference

await doc()

Returns the document after the change

If the include_docswas set, this will use the data provided in the received event. Otherwise, the document
is fetched from the server.

Return type
Document

class aiocouch.event.DeletedEvent(json)
This event denotes that the document got deleted

json: Dict[str, Any]

The raw data of the event as JSON

8.4 Documents

A key role in aiocouch takes the Document class. Every data send and retrieved from the server is represented by an
instance of that class. There are no other ways in aiocouch to interact with documents.

8.4.1 Getting a Document instance

While the constructor can be used to get an instance representing a specific document, the canonical way is the usage
of member functions of instances of the Database class.

butterfly_doc = await database["butterfly"]
wolpertinger = await database.get("wolpertinger")

These methods create a Document and fetch the data from the server. For some cases, though, a precise control other
the performed requests are required. The above code snippet is equivalent to this:

butterfly_doc = Document(database, "butterly")
await butterfly_doc.fetch()

8.4.2 Creating new Documents

The creation of a new document on the server consists of three steps. First, you need a local document handle, i.e., an
Document instance. Then you set the contents of the document. And finally, the local document is saved to the server.

get an Document instance
doc = await database.create("new_doc")

set the document content
doc["name"] = "The new document"

actually perform the request to save the document on the server
await doc.save()

24 Chapter 8. Table of contents

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

aiocouch, Release 3.0.0

8.4.3 Modify existing documents

The modification of an existing document works very similarly to the creation. Retrieving the document, updating its
contents, and finally saving the modified data to the server.

get an Document instance
doc = await database["existing_doc"]

update the document content
doc["name"] = "The modified document"

actually perform the request to save the modification to the server
await doc.save()

8.4.4 Using Async Context Managers

To simplify the process of retrieving a document from remote server (or creating a new one if it didn’t exist before),
modifying it, and saving changes on remote server, you can also use asynchronous context managers.

Using context managers saves you from having to manually perform a lot of these operations as the context managers
handle these operations for you automatically.

aiocouch provides async context managers for both Document and SecurityDocument.

Document Context Manager Example

from aiocouch import CouchDB
from aiocouch.document import Document

async with CouchDB(SERVER_URL, USER, PASSWORD) as client:
Create database on remote server (fetching it if it already exists)
my_database = await client.create("my_database", exists_ok=True)

If document exists, it's fetched from the remote server
async with Document(my_database, "secret_agents") as document:

Changes are made locally
document["name"] = "James Bond"
document["code"] = "007"

Upon exit from above context manager, document is saved remotely

Display the newly created document after fetching from remote server
document = await my_database["secret_agents"]
print(document)

Warning: Uncaught exceptions inside the async with block will prevent your document changes from being
saved to the remote server.

8.4. Documents 25

aiocouch, Release 3.0.0

Security Document Context Manager Example

Similarly, you can also use Security Document context manager to add or remove admins or members from a CouchDB
database

from aiocouch import CouchDB
from aiocouch.document import Document

async with CouchDB(SERVER_URL, USER, PASSWORD) as client:
Create database on remote server (fetching it if it already exists)
my_database = await client.create("my_database", exists_ok=True)

async with SecurityDocument(my_database) as security_doc:
Give user 'bond' member access to 'my_database' database
security_doc.add_member("bond")
Give user 'fleming' admin access to 'my_database' database
security_doc.add_admin("fleming")

Upon exit from above context manager, document is saved remotely

Display the recent changes made to security document
security_doc = await my_database.security()
print(security_doc)

Warning: Uncaught exceptions inside the async with block will prevent your security document changes from
being saved to the remote server.

8.4.5 Conflict handling

Whenever, two or more different Document instances want to save the same document on the server, a ConflictError
can occur. To cope with conflicts, there are a set of different strategies, which can be used.

One trivial solution is to simply ignore conflicts.This is a viable strategy if only the existance of the document matters.

with contextlib.suppress(aiocouch.ConflictError):
await doc.save()

Another straight-forward solution is to override the contents of the existing document. Though, this example code isn’t
a complete solution either, as the second call to save() might raise a ConflictError again.

try:
await doc.save()

except aiocouch.ConflictError:
info = await doc.info()
doc.rev = info["rev"]
await doc.save()

Other use cases may require a more sophisticated merging of documents. However, there isn’t a generic solution to
such an approach. Thus, we forego to show example code here.

26 Chapter 8. Table of contents

aiocouch, Release 3.0.0

8.4.6 Reference

class aiocouch.document.Document(database, id, data=None)
A local representation for the referenced CouchDB document

An instance of this class represents a local copy of the document data on the server. This class behaves like a
dict containing the document data and allows to fetch() and save() documents. For details about the dict-like
interface, please refer to the Python manual.

Constructing an instance of this class does not cause any network requests.

Variables
id – the id of the document

Parameters

• database (Database) – The database of the document

• id (str) – the id of the document

• data (Optional[Dict[str, Any]]) – the initial data used to set the body of the document

attachment(id)
Returns the attachment object

The attachment object is returned, but this method doesn’t actually fetch any data from the server. Use
fetch() and save(), respectively.

Parameters
id (str) – the id of the attachment

Return type
Attachment

Returns
Returns the attachment object

await copy(new_id)
Create a copy of the document on the server

Creates a new document with the data currently stored on the server.

Note: This method uses the COPY /{db}/{docid} endpoint.

If you need to know the rev of the created document, use the Etag header entry.

Parameters
new_id (str) – the id of the new document

Return type
HTTPResponse

Returns
If the request succeeded, returns the HTTPResponse instance.

property data: Optional[Dict[str, Any]]

Returns the document as a dict

If exists() is False, this function returns None.

This method does not perform a network request.

8.4. Documents 27

https://docs.python.org/3/library/stdtypes.html#typesmapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.couchdb.org/en/stable/api/document/common.html#copy--db-docid
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

aiocouch, Release 3.0.0

Returns
Returns the data of the document or None

await delete(discard_changes=False)
Marks the document as deleted on the server

Calling this method deletes the local data and marks document as deleted on the server. Afterwards, the
instance can be filled with new data and call save() again.

Note: This method uses the DELETE /{db}/{docid} endpoint.

If you want to remove the data from the server, you’d need to use the _purge endpoint instead.

Raises

• ConflictError – if the local data has changed without saving

• ConflictError – if the local revision is different from the server. See Conflict handling.

Return type
HTTPResponse

Returns
If the request succeeded, returns the HTTPResponse instance.

property exists: bool

Denotes whether the document exists

A document exists, if an existing was fetch() ed from the server and retrieved data doesn’t contain the
_deleted field. Or a new document was saved using save().

This method does not perform a network request.

Returns
True if the document exists, False overwise

await fetch(discard_changes=False, *, rev=None)
Retrieves the document data from the server

Fetching the document will retrieve the data from the server using a network request and update the local
data.

Raises

• ConflictError – if the local data has changed without saving

• BadRequestError – if the given rev is invalid or missing

Parameters

• discard_changes (bool) – If set to True, the local data object will the overridden with
the retrieved content. If the local data was changed, no exception will be raised.

• rev (Optional[str]) – The requested rev of the document. The requested rev might not
or not anymore exist on the connected server.

Return type
None

28 Chapter 8. Table of contents

https://docs.couchdb.org/en/stable/api/document/common.html#delete--db-docid
https://docs.couchdb.org/en/stable/api/database/misc.html#api-db-purge
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

aiocouch, Release 3.0.0

await info()

Returns a short information about the document.

This method sends a request to the server to retrieve the current status.

Raises
NotFoundError – if the document does not exist on the server

Return type
Dict[str, Any]

Returns
A dict containing the id and revision of the document on the server

property json: Dict[str, Any]

Returns the document content as a JSON-like dict

In particular, all CouchDB-internal document keys will be omitted, e.g., _id, _rev If exists() is False,
this function returns an empty dict.

This method does not perform a network request.

property rev: Optional[str]

Allows to set and get the local revision

If the local document wasn’t fetched or saved, this is None.

await save()

Saves the current state to the CouchDB server

Only sends a request, if the local state has been changed since the retrieval of the document data.

Raises
ConflictError – if the local revision is different from the server. See Conflict handling.

Return type
Optional[HTTPResponse]

Returns
If a successful request was made, returns the HTTPResponse instance.

class aiocouch.remote.HTTPResponse(resp)
Represents an HTTP response from the CouchDB server.

property etag: Optional[str]

Convenient property to access the ETag header in a usable format

headers: Dict[str, str]

The HTTP headers of the response

status: int

The HTTP response status, usually 200, 201 or 202

8.4. Documents 29

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

aiocouch, Release 3.0.0

8.5 Attachments

Attachments are independent binary data attached to a document. They are file-like and require a name and the content
type. As attachments do not have size restrictions, they are handled a bit differently than documents in the Document
class. The content of the attachment isn’t cached in the instance at any point, thus data access require a network request.

8.5.1 Getting an Attachment instance

Given a document instance, we can get an Attachment instance using the attachment() member function. Unlike
with Document instances, no data is retrieved from the sever yet.

butterfly = await database["butterfly"]
image_of_a_butterfly = butterfly.attachment("image.png")

8.5.2 Retrieving the Attachment content

To actually retrieve the data stored on the server, you have to use the fetch()method. Once the fetch method is called,
the content_type member will be set to appropriate value passed from the server.

data = await image_of_a_butterfly.fetch()

8.5.3 Saving the content of an attachment

8.5.4 Reference

class aiocouch.attachment.Attachment(document, id)
A local representation for the referenced CouchDB document attachment

An instance of this class represents a local copy of an attachment of CouchDB documents.

Variables

• id – the id of the attachment

• content_type – the content type of the attachment, only available after fetch() has been
called.

Parameters

• document (Document) – The correlated document

• id (str) – the id of the attachment

await delete()

Deletes the attachment from the server

Return type
None

await exists()

Checks if the attachment exists on the server

Return type
bool

30 Chapter 8. Table of contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

aiocouch, Release 3.0.0

Returns
returns True if the attachment exists

await fetch()

Returns the content of the attachment

Return type
bytes

Returns
the attachment content

await save(data, content_type)
Saves the given attachment content on the server

Parameters

• data (bytes) – the content of the attachment

• content_type (str) – the content type of the given data. (See Content type)

Return type
None

8.6 Design docs and views

The interface for design documents and views aren’t final yet.

8.7 Bulk operations

Bulk operations are helpful when you need to create or update several documents within one Database with a low
amount of requests. In particular, the _bulk_docs endpoint allows to write a bunch of documents in one request.

Bulk operations in aiocouch are similar to transactions. You define the set of affected Document, apply the changes
and finally perform the bulk request. Depending on the particular task, you need to use one of two context manager
classes.

For example, the following code affects the documents foo and baz, existing or not, and sets the key llama to awesome
with one bulk request.

async with database.update_docs(["foo", "baz"], create=True) as bulk:
async for doc in bulk:

doc["llama"] = "awesome"

8.7.1 Include documents in bulk operations

Affected documents can be defined in two ways. The first way is to pass a list of document ids as the ids parameter.

async with database.update_docs(ids=["foo", "baz"]) as bulk:
...

The second method is the usage of the append() method. Just pass an instance of Document and its content will be
saved as part of the bulk operation.

8.6. Design docs and views 31

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
https://docs.python.org/3/library/constants.html#None
https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs

aiocouch, Release 3.0.0

the_document = Document(...)

async with BulkOperation(database=my_database) as bulk:
bulk.append(the_document)

Once the control flow leaves the context, the bulk operation persists the applied changes to all documents that there
included in the bulk operation one or the other way. Also, both ways can be mixed.

8.7.2 Create many documents in one operation

To create many documents, you use the create_docs() method to get the context manager. Include documents as
described above. Once the context manager closes, one request containing all document contents gets send to the server.

async with my_database.create_docs(...) as bulk:
for doc in bulk:

make changes to the Document instances

the request was send now

Note that the bulk operation does not check, if the requested documents alrady exists on the server. Instead, the error
list will contain conflict in the error field corresponding to the document.

8.7.3 Update many documents in one operation

To update many documents, you use the update_docs() method to get the context manager. Include documents as
described above. Once the context manager closes, one request containing all document contents gets send to the server.
In contrast to the create operation, the BulkUpdateOperation context manager will request all documents whose ids
where passed as the ids parameter. If you already have Document instance, you may want to use the append()method
instead.

my_doc: Document = ...

async with my_database.update_docs(...) as bulk:
bulk.append(my_doc)

for doc in docs:
make changes to the Document instances

the request was send now

8.7.4 Error handling for bulk operations

The important bit first, none of the bulk operation context manager will raise an exception if something in the request
went wrong. Each individual document can be saved successfully or may have an error. It’s in your responsibility to
check the status after the request finished.

You can check the status of each document with the ok , error, and response properties of the context manager.
The ok and error lists contain all documents that could and couldn’t be saved properly, respectively. The response
contains the response from the CouchDB server. So in case of an error, it will contain a description of what went
wrong.

32 Chapter 8. Table of contents

aiocouch, Release 3.0.0

async with BulkOperation(database=my_database) as bulk:
...

if len(bulk.error) == 0:
print(f"Saved all {len(bulk.ok)} documents")

else:
print(f"Failed to saved {len(bulk.error)} documents")

8.7.5 Reference

class aiocouch.bulk.BulkOperation(database)
A context manager for bulk operation. This operation allows to write many documents in one request.

Bulk operations use the _bulk_docs endpoint of the database.

To populate the list of written documents, use the append() method.

Parameters
database (Database) – The database used in the bulk operation

async for ... in __aiter__()

An iterator that yields Document instances that are part of this bulk operation.

Returns
Every Document instance that will be affected by this operation

Return type
AsyncGenerator[Document, None]

append(doc)
Add a document to this bulk operation.

Parameters
doc (Document) – the document that should be stored as part of the bulk operation

Raises
ValueError – if the provided document instance is already part of the bulk operation

Return type
Document

Returns
the provided document

create(id, data=None)
Create a new document as part of the bulk operation

Parameters

• id (str) – the id of the document

• data (Optional[Dict[str, Any]]) – the inital data used to set the body of the document,
defaults to None

Raises
ValueError – if the provided document id is already part of the bulk operation

Return type
Document

8.7. Bulk operations 33

https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

aiocouch, Release 3.0.0

Returns
a Document instance reference the newly created document

error: Optional[List[Document]]

The list of all Document instances that could not be saved to server.

Only available after the context manager has finished without a passing exception.

ok: Optional[List[Document]]

The list of all Document instances that there successfully saved to server.

Only available after the context manager has finished without a passing exception.

response: Optional[List[Dict[str, Any]]]

The resulting JSON response of the _bulk_docs request. Refer to the CouchDB documentation for the
contents.

Only available after the context manager has finished without a passing exception.

property status: Optional[List[Dict[str, Any]]]

Deprecated since version 2.1.0: Use the response property instead.

update(doc)
Add a document to this bulk operation.

Parameters
doc (Document) – the document that should be stored as part of the bulk operation

Raises
ValueError – if the provided document instance is already part of the bulk operation

Return type
Document

Returns
the provided document

Deprecated since version 2.1.0: Use append(doc) instead. It just makes more sense.

class aiocouch.bulk.BulkCreateOperation(database, ids=[])
A context manager for bulk creation operations. This operation allows to write many documents in one request.

Bulk operations use the _bulk_docs endpoint of the database.

Parameters

• database (Database) – The database used in the bulk operation

• ids (List[str]) – a list of ids of the involved documents, defaults to []

error: Optional[List[Document]]

The list of all Document instances that could not be saved to server.

Only available after the context manager has finished without a passing exception.

ok: Optional[List[Document]]

The list of all Document instances that there successfully saved to server.

Only available after the context manager has finished without a passing exception.

34 Chapter 8. Table of contents

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List

aiocouch, Release 3.0.0

response: Optional[List[Dict[str, Any]]]

The resulting JSON response of the _bulk_docs request. Refer to the CouchDB documentation for the
contents.

Only available after the context manager has finished without a passing exception.

class aiocouch.bulk.BulkUpdateOperation(database, ids=[], create=False)
A context manager for bulk update of documents. In particular, for every provided id, a Document instance is
provided. The data is fetched using the AllDocsView with a minimal amount of requests.

Parameters

• database (Database) – The database of the bulk operation

• ids (List[str]) – list of document ids

• create (bool) – If True, every document contained in ids that doesn’t exist, will be repre-
sented by an empty Document instance.

error: Optional[List[Document]]

The list of all Document instances that could not be saved to server.

Only available after the context manager has finished without a passing exception.

ok: Optional[List[Document]]

The list of all Document instances that there successfully saved to server.

Only available after the context manager has finished without a passing exception.

response: Optional[List[Dict[str, Any]]]

The resulting JSON response of the _bulk_docs request. Refer to the CouchDB documentation for the
contents.

Only available after the context manager has finished without a passing exception.

8.8 Exceptions

Most errors you encounter in aiocouch stem from HTTP request to the CouchDB server. Most of those are therefore
captured an transformed into exceptions. There might still be other errors, however those should not be encountered
under normal operation.

For further details, what can cause individual status codes, see also HTTP Status codes.

exception aiocouch.BadRequestError

Represents a 400 HTTP status code returned from the server

exception aiocouch.ConflictError

Represents a 409 HTTP status code returned from the server

exception aiocouch.ExpectationFailedError

Represents a 417 HTTP status code returned from the server

exception aiocouch.ForbiddenError

Represents a 403 HTTP status code returned from the server

exception aiocouch.NotFoundError

Represents a 404 HTTP status code returned from the server

8.8. Exceptions 35

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs
https://docs.couchdb.org/en/stable/api/basics.html#errors

aiocouch, Release 3.0.0

exception aiocouch.PreconditionFailedError

Represents a 412 HTTP status code returned from the server

exception aiocouch.UnauthorizedError

Represents a 401 HTTP status code returned from the server

exception aiocouch.UnsupportedMediaTypeError

Represents a 415 HTTP status code returned from the server

36 Chapter 8. Table of contents

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

37

aiocouch, Release 3.0.0

38 Chapter 9. Indices and tables

PYTHON MODULE INDEX

a
aiocouch, 35

39

aiocouch, Release 3.0.0

40 Python Module Index

INDEX

Symbols
__aiter__() (aiocouch.bulk.BulkOperation method), 33
__getitem__() (aiocouch.CouchDB method), 18
__getitem__() (aiocouch.database.Database method),

20

A
aiocouch

module, 35
akeys() (aiocouch.database.Database method), 20
all_docs (aiocouch.database.Database property), 20
append() (aiocouch.bulk.BulkOperation method), 33
Attachment (class in aiocouch.attachment), 30
attachment() (aiocouch.document.Document method),

27

B
BadRequestError, 35
BaseChangeEvent (class in aiocouch.event), 23
BulkCreateOperation (class in aiocouch.bulk), 34
BulkOperation (class in aiocouch.bulk), 33
BulkUpdateOperation (class in aiocouch.bulk), 35

C
ChangedEvent (class in aiocouch.event), 23
changes() (aiocouch.database.Database method), 20
check_credentials() (aiocouch.CouchDB method),

18
close() (aiocouch.CouchDB method), 18
ConflictError, 35
copy() (aiocouch.document.Document method), 27
CouchDB (class in aiocouch), 17
create() (aiocouch.bulk.BulkOperation method), 33
create() (aiocouch.CouchDB method), 18
create() (aiocouch.database.Database method), 20
create_docs() (aiocouch.database.Database method),

21

D
data (aiocouch.document.Document property), 27
database (aiocouch.event.ChangedEvent attribute), 23
Database (class in aiocouch.database), 20

delete() (aiocouch.attachment.Attachment method), 30
delete() (aiocouch.database.Database method), 21
delete() (aiocouch.document.Document method), 28
DeletedEvent (class in aiocouch.event), 24
doc() (aiocouch.event.ChangedEvent method), 24
docs() (aiocouch.database.Database method), 21
Document (class in aiocouch.document), 27

E
error (aiocouch.bulk.BulkCreateOperation attribute), 34
error (aiocouch.bulk.BulkOperation attribute), 34
error (aiocouch.bulk.BulkUpdateOperation attribute),

35
etag (aiocouch.remote.HTTPResponse property), 29
exists (aiocouch.document.Document property), 28
exists() (aiocouch.attachment.Attachment method), 30
ExpectationFailedError, 35

F
fetch() (aiocouch.attachment.Attachment method), 31
fetch() (aiocouch.document.Document method), 28
find() (aiocouch.database.Database method), 22
ForbiddenError, 35

G
get() (aiocouch.database.Database method), 22

H
headers (aiocouch.remote.HTTPResponse attribute), 29
HTTPResponse (class in aiocouch.remote), 29

I
id (aiocouch.event.BaseChangeEvent property), 23
index() (aiocouch.database.Database method), 22
info() (aiocouch.CouchDB method), 18
info() (aiocouch.database.Database method), 23
info() (aiocouch.document.Document method), 28

J
json (aiocouch.document.Document property), 29
json (aiocouch.event.BaseChangeEvent attribute), 23

41

aiocouch, Release 3.0.0

json (aiocouch.event.DeletedEvent attribute), 24

K
keys() (aiocouch.CouchDB method), 18

M
module

aiocouch, 35

N
NotFoundError, 35

O
ok (aiocouch.bulk.BulkCreateOperation attribute), 34
ok (aiocouch.bulk.BulkOperation attribute), 34
ok (aiocouch.bulk.BulkUpdateOperation attribute), 35

P
PreconditionFailedError, 35

R
response (aiocouch.bulk.BulkCreateOperation at-

tribute), 34
response (aiocouch.bulk.BulkOperation attribute), 34
response (aiocouch.bulk.BulkUpdateOperation at-

tribute), 35
rev (aiocouch.document.Document property), 29
rev (aiocouch.event.BaseChangeEvent property), 23

S
save() (aiocouch.attachment.Attachment method), 31
save() (aiocouch.document.Document method), 29
sequence (aiocouch.event.BaseChangeEvent property),

23
status (aiocouch.bulk.BulkOperation property), 34
status (aiocouch.remote.HTTPResponse attribute), 29

U
UnauthorizedError, 36
UnsupportedMediaTypeError, 36
update() (aiocouch.bulk.BulkOperation method), 34
update_docs() (aiocouch.database.Database method),

23

V
values() (aiocouch.database.Database method), 23

42 Index

	Key features
	Library installation
	Getting started
	Tutorial
	Source code
	Dependencies
	Authors and License
	Table of contents
	Introduction
	Session
	Examples
	Reference

	Databases
	Getting a Database instance
	Creating new databases
	Listing documents
	Reference

	Documents
	Getting a Document instance
	Creating new Documents
	Modify existing documents
	Using Async Context Managers
	Document Context Manager Example
	Security Document Context Manager Example

	Conflict handling
	Reference

	Attachments
	Getting an Attachment instance
	Retrieving the Attachment content
	Saving the content of an attachment
	Reference

	Design docs and views
	Bulk operations
	Include documents in bulk operations
	Create many documents in one operation
	Update many documents in one operation
	Error handling for bulk operations
	Reference

	Exceptions

	Indices and tables
	Python Module Index
	Index

