

Welcome to aiocouch

Asynchronous CouchDB client library for asyncio and Python.

Current version is 3.0.0.

Key features

	All requests are asynchronus using aiohttp

	Supports CouchDB 2.x and 3.x

	Support for modern Python ≥ 3.7

Library installation

pip install aiocouch

Getting started

The following code retrieves and prints the list of incredients of the apple_pie recipe.
The incredients are stored as a list in the apple_pie Document,
which is part of the recipe Database. We use the context manager
CouchDB to create a new session.

from aiocouch import CouchDB

async with CouchDB(
 "http://localhost:5984", user="admin", password="admin"
) as couchdb:
 db = await couchdb["recipes"]
 doc = await db["apple_pie"]
 print(doc["incredients"])

We can also create new recipes, for instance for some delicious cookies.

 new_doc = await db.create(
 "cookies", data={"title": "Granny's cookies", "rating": "★★★★★"}
)
 await new_doc.save()
#

Tutorial

You can find a more in-depth discussion of the core concepts and next steps at
the Introduction page.

Source code

The project is hosted on GitHub [https://github.com/metricq/aiocouch].

Please feel free to file an issue on the bug tracker [https://github.com/metricq/aiocouch/issues] if you have found a bug
or have some suggestion in order to improve the library.

The library uses GitHub Actions [https://github.com/metricq/aiocouch/actions] for
Continuous Integration.

Dependencies

	Python 3.7+

	aiohttp

	Deprecated

Authors and License

The aiocouch package is written mostly by Mario Bielert.

It’s BSD 3-clause licensed and freely available.

Feel free to improve this package and send a pull request to GitHub [https://github.com/metricq/aiocouch].

Table of contents

	Introduction

	Session

	Databases

	Documents

	Attachments

	Design docs and views

	Bulk operations

	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This short tutorial will give you an overview of the aiocouch library.

You can directly jump to particular sections using the Navigation on the left.

Session

Every request to the CouchDB server is embedded into a session. A session is represented by an
instance of aiocouch.CouchDB. A session can be created using the constructor of the class
or by using the class as a context manager.

Examples

Create a session with the context manager

async with aiocouch.CouchDB("http://localhost") as couchdb:
 await couchdb.check_credentials()

Note that the session will be closed, once the scope of the with statement is left.

A session can also be handled using variables. The session needs to be closed manually.

couchdb = aiocouch.CouchDB("http://localhost")
await couchdb.check_credentials()
await couchdb.close()

Reference

	
class aiocouch.CouchDB(*args, **kwargs)

	CouchDB Server Connection Session

The

	Parameters

	
	server (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL of the CouchDB server

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – user used for authentication

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – password for authentication

	cookie (str [https://docs.python.org/3/library/stdtypes.html#str]) – The session cookie used for authentication

	kwargs (Any) – Any other kwargs are passed to aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]

	
await __getitem__(id)

	Returns a representation for the given database identifier

	Raises

	NotFoundError – if the database does not exist

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The identifier of the database

	Return type

	Database

	Returns

	The representation of the database

	
await check_credentials()

	Check the provided credentials.

	Raises

	UnauthorizedError – if provided credentials aren’t valid

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
await close()

	Closes the connection to the CouchDB server

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
await create(id, exists_ok=False, **kwargs)

	Creates a new database on the server

	Raises

	PreconditionFailedError – if the database already
exists and exists_ok is False

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the identifier of the database

	exists_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, don’t raise if the database exists

	Return type

	Database

	Returns

	Returns a representation for the created database

	
await info()

	Returns the meta information about the connected CouchDB server.

See also GET / [https://docs.couchdb.org/en/stable/api/server/common.html#get--].

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Returns

	A dict containing the response json.

	
await keys(**params)

	Returns all database names

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A list containing the names of all databases on the server

Databases

Once you have established a session with the server, you need a Database
instance to access the data. A Database instance is an representation of a database on the server.
Database instances allow to access Document instances. Also, Database
instances can be used to configure the user and group permissions.

Getting a Database instance

While the constructor of the Database class can be used to get a
representation of a specific database, the canonical way to get an instance are the member functions
of the CouchDB class.

The following code returns an instance for the animals database.

animals = await session["animals"]

aiocouch only allows to get an instance for a database that exists on the server.

Creating new databases

To create a new database on the server, the create() method of the
session object is used.

animals = await session.create("animals")

By default, aiocouch only allows to use the create method for a database that does not exist on
the server.

Listing documents

The _all_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-all-docs] view allows to retrieve all documents stored in a
given database on the server. aiocouch also exposes this view as methods of the database class.

The method docs() allows to retrieve documents by a list of ids
or all documents with ids matching a given prefix. Similar to a dict, all documents of a database
can be iterated with the methods akeys(), and
values().

To perform more sophisticated document selections, the method
find() allows to search for documents matching the complex
selector syntax [https://docs.couchdb.org/en/stable/api/database/find.html#find-selectors] of CouchDB.

Reference

	
class aiocouch.database.Database(couchdb, id)

	A local representation for the referenced CouchDB database

An instance of this class represents a local copy of a CouchDB database. It allows
to create and retrieve Document instances, as well as
the iteration other many documents.

	Variables

	id – the id of the database

	Parameters

	
	couchdb (CouchDB) – The CouchDB connection session

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of the database

	
await __getitem__(id)

	Returns the document with the given id

	Raises

	NotFoundError – if the given document does not exist

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the document

	Return type

	Document

	Returns

	a local copy of the document

	
async for ... in akeys(**params)

	A generator returning the names of all documents in the database

	Parameters

	params (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – passed into aiohttp.ClientSession.request() [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession.request]

	Return type

	AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]

	Returns

	returns all document ids

	
property all_docs: AllDocsView

	Returns the all_docs view of the database

	Returns

	Description of returned object.

	
async for ... in changes(last_event_id=None, **params)

	Listens for events made to documents of this database

This will return DeletedEvent and
ChangedEvent for deleted and modified
documents, respectively.

See also /db/_changes [https://docs.couchdb.org/en/stable/api/database/changes.html#api-db-changes].

For convenience, the last-event-id parameter can also be passed
as last_event_id.

	Return type

	AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][BaseChangeEvent, None [https://docs.python.org/3/library/constants.html#None]]

	
await create(id, exists_ok=False, data=None)

	Returns a local representation of a new document in the database

This method will check if a document with the given name already exists and
return a Document instance.

This method does not create a document with the given name on the server. You
need to call save() on the returned document.

	Raises

	ConflictError – if the document does not exist on the server

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the document

	exists_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, do not raise a ConflictError if
an document with the given name already exists. Instead return the existing
document.

	data (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Description of parameter data. Defaults to None.

	Return type

	Document

	Returns

	returns a Document instance representing
the requested document

	
async with create_docs(ids=[])

	Create documents in bulk.

See Bulk operations.

	Parameters

	ids (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of document ids to be created

	Return type

	AbstractAsyncContextManager[BulkCreateOperation]

	Returns

	A context manager for the bulk operation

	
await delete()

	Delete the database on the server

Send the request to delete the database and all of its documents.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
async for ... in docs(ids=None, create=False, prefix=None, include_ddocs=False, **params)

	A generator to iterator over all or a subset of documents in the database.

When neither of ids nor prefix are specified, all documents will be
iterated. Only one of ids and prefix can be specified. By default, design
documents are not included.

	Parameters

	
	ids (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Allows to iterate over a subset of documents by passing a list of
document ids

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, every document contained in ids, which doesn’t
exist, will be represented by an empty
Document instance.

	prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Allows to iterator over a subset of documents by specifying a
prefix that the documents must match.

	include_ddocs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the design documents of the database.

	params (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Additional query parameters,
see CouchDB view endpoint [https://docs.couchdb.org/en/stable/api/ddoc/views.html#api-ddoc-view].

	Return type

	AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][Document, None [https://docs.python.org/3/library/constants.html#None]]

	
async for ... in find(selector, limit=None, **params)

	Fetch documents based on search criteria

This method allows to use the _find [https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find]
endpoint of the database.

This method supports all request parameters listed in
_find [https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find].

Note

As this method returns Document s, which
contain the complete data, the fields parameter is not supported.

	Parameters

	selector (type [https://docs.python.org/3/library/functions.html#type]) – See selectors [https://docs.couchdb.org/en/stable/api/database/find.html#find-selectors]

	Return type

	AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][Document, None [https://docs.python.org/3/library/constants.html#None]]

	Returns

	return all documents matching the passed selector.

	
await get(id, default=None, *, rev=None)

	Returns the document with the given id

	Raises

	
	NotFoundError – if the given document does not exist and
default is None

	BadRequestError – if the given rev of the document is
invalid or missing

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the document

	default (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – if default is not None and the document does not exist on
the server, a new Document instance, containing
default as its contents, is returned. To create the document on the
server, save() has to be called on the
returned instance.

	rev (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The requested rev of the document. The requested rev might not
or not anymore exist on the connected server.

	Return type

	Document

	Returns

	a local representation of the requested document

	
await index(index, **kwargs)

	Create a new index on the database

This method allows to use the _index [https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find-index]
endpoint of the database.

This method supports all request parameters listed in
_index [https://docs.couchdb.org/en/stable/api/database/find.html#api-db-find-index].

	Parameters

	
	index (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – JSON description of the index

	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – additional parameters, refer to the CouchDB documentation

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Returns

	The response of the CouchDB _index endpoint

	
await info()

	Returns basic information about the database

See also GET /{db} [https://docs.couchdb.org/en/stable/api/database/common.html#get--db].

	Returns

	Description of returned object.

	Return type

	def

	
async with update_docs(ids=[], create=False)

	Update documents in bulk.

See Bulk operations.

	Parameters

	
	ids (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of affected documents, defaults to []

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – [description], defaults to False

	Return type

	AbstractAsyncContextManager[BulkUpdateOperation]

	Returns

	A context manager for the bulk operation

	
async for ... in values(**params)

	Iterates over documents in the database

See docs().

	Return type

	AsyncGenerator [https://docs.python.org/3/library/typing.html#typing.AsyncGenerator][Document, None [https://docs.python.org/3/library/constants.html#None]]

	
class aiocouch.event.BaseChangeEvent(json)

	The base event for shared properties

	
property id: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the id of the document

	
json: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	The raw data of the event as JSON

	
property rev: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the new rev of the document

	
property sequence: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the sequence identifier of the event

	
class aiocouch.event.ChangedEvent(json, database)

	This event denotes that the document got modified

	
database: Database

	The database for reference

	
await doc()

	Returns the document after the change

If the include_docs was set, this will use the data provided in the received event.
Otherwise, the document is fetched from the server.

	Return type

	Document

	
class aiocouch.event.DeletedEvent(json)

	This event denotes that the document got deleted

	
json: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	The raw data of the event as JSON

Documents

A key role in aiocouch takes the Document class. Every data send and
retrieved from the server is represented by an instance of that class. There are no other ways in
aiocouch to interact with documents.

Getting a Document instance

While the constructor can be used to get an instance representing a specific document, the canonical
way is the usage of member functions of instances of the Database class.

butterfly_doc = await database["butterfly"]
wolpertinger = await database.get("wolpertinger")

These methods create a Document and fetch the data from the server. For
some cases, though, a precise control other the performed requests are required. The above code
snippet is equivalent to this:

butterfly_doc = Document(database, "butterly")
await butterfly_doc.fetch()

Creating new Documents

The creation of a new document on the server consists of three steps. First, you need a local
document handle, i.e., an Document instance. Then you set the contents
of the document. And finally, the local document is saved to the server.

get an Document instance
doc = await database.create("new_doc")

set the document content
doc["name"] = "The new document"

actually perform the request to save the document on the server
await doc.save()

Modify existing documents

The modification of an existing document works very similarly to the creation. Retrieving the
document, updating its contents, and finally saving the modified data to the server.

get an Document instance
doc = await database["existing_doc"]

update the document content
doc["name"] = "The modified document"

actually perform the request to save the modification to the server
await doc.save()

Using Async Context Managers

To simplify the process of retrieving a document from remote server (or creating
a new one if it didn’t exist before), modifying it, and saving changes on remote
server, you can also use asynchronous context managers.

Using context managers saves you from having to manually perform a lot of
these operations as the context managers handle these operations for you automatically.

aiocouch provides async context managers for both Document
and SecurityDocument.

Document Context Manager Example

from aiocouch import CouchDB
from aiocouch.document import Document

async with CouchDB(SERVER_URL, USER, PASSWORD) as client:
 # Create database on remote server (fetching it if it already exists)
 my_database = await client.create("my_database", exists_ok=True)

 # If document exists, it's fetched from the remote server
 async with Document(my_database, "secret_agents") as document:
 # Changes are made locally
 document["name"] = "James Bond"
 document["code"] = "007"
 # Upon exit from above context manager, document is saved remotely

 # Display the newly created document after fetching from remote server
 document = await my_database["secret_agents"]
 print(document)

Warning

Uncaught exceptions inside the async with block will prevent your
document changes from being saved to the remote server.

Security Document Context Manager Example

Similarly, you can also use Security Document context manager to add or remove admins
or members from a CouchDB database

from aiocouch import CouchDB
from aiocouch.document import Document

async with CouchDB(SERVER_URL, USER, PASSWORD) as client:
 # Create database on remote server (fetching it if it already exists)
 my_database = await client.create("my_database", exists_ok=True)

 async with SecurityDocument(my_database) as security_doc:
 # Give user 'bond' member access to 'my_database' database
 security_doc.add_member("bond")
 # Give user 'fleming' admin access to 'my_database' database
 security_doc.add_admin("fleming")
 # Upon exit from above context manager, document is saved remotely

 # Display the recent changes made to security document
 security_doc = await my_database.security()
 print(security_doc)

Warning

Uncaught exceptions inside the async with block will prevent your
security document changes from being saved to the remote server.

Conflict handling

Whenever, two or more different Document instances want to save the same
document on the server, a ConflictError can occur. To cope with conflicts, there
are a set of different strategies, which can be used.

One trivial solution is to simply ignore conflicts.This is a viable strategy if only the existance
of the document matters.

with contextlib.suppress(aiocouch.ConflictError):
 await doc.save()

Another straight-forward solution is to override the contents of the existing document. Though,
this example code isn’t a complete solution either, as the second call to
save() might raise a ConflictError again.

try:
 await doc.save()
except aiocouch.ConflictError:
 info = await doc.info()
 doc.rev = info["rev"]
 await doc.save()

Other use cases may require a more sophisticated merging of documents. However, there isn’t a
generic solution to such an approach. Thus, we forego to show example code here.

Reference

	
class aiocouch.document.Document(database, id, data=None)

	A local representation for the referenced CouchDB document

An instance of this class represents a local copy of the document data on the
server. This class behaves like a dict containing the document data and allows to
fetch() and
save() documents. For details about the dict-like
interface, please refer to the Python manual [https://docs.python.org/3/library/stdtypes.html#typesmapping].

Constructing an instance of this class does not cause any network requests.

	Variables

	id – the id of the document

	Parameters

	
	database (Database) – The database of the document

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of the document

	data (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – the initial data used to set the body of the document

	
attachment(id)

	Returns the attachment object

The attachment object is returned, but this method doesn’t actually fetch any
data from the server. Use
fetch() and
save(), respectively.

	Parameters

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of the attachment

	Return type

	Attachment

	Returns

	Returns the attachment object

	
await copy(new_id)

	Create a copy of the document on the server

Creates a new document with the data currently stored on the server.

Note

This method uses the COPY /{db}/{docid} [https://docs.couchdb.org/en/stable/api/document/common.html#copy--db-docid]
endpoint.

If you need to know the rev of the created document, use the
Etag header entry.

	Parameters

	new_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of the new document

	Return type

	HTTPResponse

	Returns

	If the request succeeded, returns the
HTTPResponse instance.

	
property data: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	Returns the document as a dict

If exists() is False, this function returns None.

This method does not perform a network request.

	Returns

	Returns the data of the document or None

	
await delete(discard_changes=False)

	Marks the document as deleted on the server

Calling this method deletes the local data and marks document as deleted on
the server. Afterwards, the instance can be filled with new data and call
save() again.

Note

This method uses the DELETE /{db}/{docid} [https://docs.couchdb.org/en/stable/api/document/common.html#delete--db-docid]
endpoint.

If you want to remove the data from the server, you’d need to use the
_purge [https://docs.couchdb.org/en/stable/api/database/misc.html#api-db-purge] endpoint instead.

	Raises

	
	ConflictError – if the local data has changed without saving

	ConflictError – if the local revision is different from the
server. See Conflict handling.

	Return type

	HTTPResponse

	Returns

	If the request succeeded, returns the
HTTPResponse instance.

	
property exists: bool [https://docs.python.org/3/library/functions.html#bool]

	Denotes whether the document exists

A document exists, if an existing was fetch() ed from
the server and retrieved data doesn’t contain the _deleted field. Or a new document
was saved using save().

This method does not perform a network request.

	Returns

	True if the document exists, False overwise

	
await fetch(discard_changes=False, *, rev=None)

	Retrieves the document data from the server

Fetching the document will retrieve the data from the server using a network
request and update the local data.

	Raises

	
	ConflictError – if the local data has changed without saving

	BadRequestError – if the given rev is invalid or missing

	Parameters

	
	discard_changes (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True, the local data object will the
overridden with the retrieved content. If the local data was changed, no
exception will be raised.

	rev (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The requested rev of the document. The requested rev might not
or not anymore exist on the connected server.

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
await info()

	Returns a short information about the document.

This method sends a request to the server to retrieve the current status.

	Raises

	NotFoundError – if the document does not exist on the server

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Returns

	A dict containing the id and revision of the document on the server

	
property json: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Returns the document content as a JSON-like dict

In particular, all CouchDB-internal document keys will be omitted, e.g., _id, _rev
If exists() is False, this function returns an empty dict.

This method does not perform a network request.

	
property rev: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Allows to set and get the local revision

If the local document wasn’t fetched or saved, this is None.

	
await save()

	Saves the current state to the CouchDB server

Only sends a request, if the local state has been changed since the
retrieval of the document data.

	Raises

	ConflictError – if the local revision is different from the
server. See Conflict handling.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][HTTPResponse]

	Returns

	If a successful request was made, returns the
HTTPResponse instance.

	
class aiocouch.remote.HTTPResponse(resp)

	Represents an HTTP response from the CouchDB server.

	
property etag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Convenient property to access the ETag header in a usable format

	
headers: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	The HTTP headers of the response

	
status: int [https://docs.python.org/3/library/functions.html#int]

	The HTTP response status, usually 200, 201 or 202

Attachments

Attachments are independent binary data attached to a document. They are file-like and require a
name and the content type. As attachments do not have size restrictions, they are handled a bit
differently than documents in the Document class. The content of the
attachment isn’t cached in the instance at any point, thus data access require a network request.

Getting an Attachment instance

Given a document instance, we can get an Attachment instance using the
attachment() member function. Unlike with
Document instances, no data is retrieved from the sever yet.

butterfly = await database["butterfly"]
image_of_a_butterfly = butterfly.attachment("image.png")

Retrieving the Attachment content

To actually retrieve the data stored on the server, you have to use the
fetch() method. Once the fetch method is called, the
content_type member will be set to appropriate value passed from the server.

data = await image_of_a_butterfly.fetch()

Saving the content of an attachment

Reference

	
class aiocouch.attachment.Attachment(document, id)

	A local representation for the referenced CouchDB document attachment

An instance of this class represents a local copy of an attachment of CouchDB
documents.

	Variables

	
	id – the id of the attachment

	content_type – the content type of the attachment, only available after
fetch() has been called.

	Parameters

	
	document (Document) – The correlated document

	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of the attachment

	
await delete()

	Deletes the attachment from the server

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	
await exists()

	Checks if the attachment exists on the server

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	returns True if the attachment exists

	
await fetch()

	Returns the content of the attachment

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns

	the attachment content

	
await save(data, content_type)

	Saves the given attachment content on the server

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – the content of the attachment

	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the content type of the given data. (See
Content type [https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17])

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

Design docs and views

The interface for design documents and views aren’t final yet.

Bulk operations

Bulk operations are helpful when you need to create or update several documents within one
Database with a low amount of requests. In particular, the
_bulk_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs] endpoint allows to write a bunch of documents
in one request.

Bulk operations in aiocouch are similar to transactions. You define the set of affected
Document, apply the changes and finally perform the bulk
request. Depending on the particular task, you need to use one of two context manager
classes.

For example, the following code affects the documents foo and baz, existing or not,
and sets the key llama to awesome with one bulk request.

async with database.update_docs(["foo", "baz"], create=True) as bulk:
 async for doc in bulk:
 doc["llama"] = "awesome"

Include documents in bulk operations

Affected documents can be defined in two ways. The first way is to pass a list of document
ids as the ids parameter.

async with database.update_docs(ids=["foo", "baz"]) as bulk:
 ...

The second method is the usage of the append() method.
Just pass an instance of Document and its content will be
saved as part of the bulk operation.

the_document = Document(...)

async with BulkOperation(database=my_database) as bulk:
 bulk.append(the_document)

Once the control flow leaves the context, the bulk operation persists the applied changes
to all documents that there included in the bulk operation one or the other way. Also,
both ways can be mixed.

Create many documents in one operation

To create many documents, you use the create_docs()
method to get the context manager. Include documents as described above. Once the context
manager closes, one request containing all document contents gets send to the server.

async with my_database.create_docs(...) as bulk:
 for doc in bulk:
 # make changes to the Document instances

the request was send now

Note that the bulk operation does not check, if the requested documents alrady exists on
the server. Instead, the error list will contain
conflict in the error field corresponding to the document.

Update many documents in one operation

To update many documents, you use the update_docs()
method to get the context manager. Include documents as described above. Once the context
manager closes, one request containing all document contents gets send to the server. In
contrast to the create operation, the BulkUpdateOperation context
manager will request all documents whose ids where passed as the ids parameter. If you
already have Document instance, you may want to use the
append() method instead.

my_doc: Document = ...

async with my_database.update_docs(...) as bulk:
 bulk.append(my_doc)

 for doc in docs:
 # make changes to the Document instances

the request was send now

Error handling for bulk operations

The important bit first, none of the bulk operation context manager will raise an
exception if something in the request went wrong. Each individual document can be saved
successfully or may have an error. It’s in your responsibility to check the status after
the request finished.

You can check the status of each document with the
ok, error, and
response properties of the context manager. The
ok and error
lists contain all documents that could and couldn’t be saved properly, respectively. The
response contains the response from the CouchDB
server. So in case of an error, it will contain a description of what went wrong.

async with BulkOperation(database=my_database) as bulk:
 ...

if len(bulk.error) == 0:
 print(f"Saved all {len(bulk.ok)} documents")
else:
 print(f"Failed to saved {len(bulk.error)} documents")

Reference

	
class aiocouch.bulk.BulkOperation(database)

	A context manager for bulk operation. This operation allows to
write many documents in one request.

Bulk operations use the _bulk_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs]
endpoint of the database.

To populate the list of written documents, use the append()
method.

	Parameters

	database (Database) – The database used in the bulk operation

	
async for ... in __aiter__()

	An iterator that yields Document instances that are part of this bulk operation.

	Returns

	Every Document instance that will be affected by this operation

	Return type

	AsyncGenerator[Document, None]

	
append(doc)

	Add a document to this bulk operation.

	Parameters

	doc (Document) – the document that should be stored as part of the bulk operation

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the provided document instance is already part of the bulk operation

	Return type

	Document

	Returns

	the provided document

	
create(id, data=None)

	Create a new document as part of the bulk operation

	Parameters

	
	id (str [https://docs.python.org/3/library/stdtypes.html#str]) – the id of the document

	data (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – the inital data used to set the body of the document, defaults to None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the provided document id is already part of the bulk operation

	Return type

	Document

	Returns

	a Document instance reference the newly created document

	
error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Document]]

	The list of all Document instances that could not
be saved to server.

Only available after the context manager has finished without a
passing exception.

	
ok: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Document]]

	The list of all Document instances that there
successfully saved to server.

Only available after the context manager has finished without a
passing exception.

	
response: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]

	The resulting JSON response of the _bulk_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs]
request. Refer to the CouchDB documentation for the contents.

Only available after the context manager has finished without a
passing exception.

	
property status: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]

	
Deprecated since version 2.1.0: Use the response property instead.

	
update(doc)

	Add a document to this bulk operation.

	Parameters

	doc (Document) – the document that should be stored as part of the bulk operation

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the provided document instance is already part of the bulk operation

	Return type

	Document

	Returns

	the provided document

Deprecated since version 2.1.0: Use append(doc) instead. It just makes more sense.

	
class aiocouch.bulk.BulkCreateOperation(database, ids=[])

	A context manager for bulk creation operations. This operation allows to
write many documents in one request.

Bulk operations use the _bulk_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs]
endpoint of the database.

	Parameters

	
	database (Database) – The database used in the bulk operation

	ids (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – a list of ids of the involved documents, defaults to []

	
error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Document]]

	The list of all Document instances that could not
be saved to server.

Only available after the context manager has finished without a
passing exception.

	
ok: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Document]]

	The list of all Document instances that there
successfully saved to server.

Only available after the context manager has finished without a
passing exception.

	
response: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]

	The resulting JSON response of the _bulk_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs]
request. Refer to the CouchDB documentation for the contents.

Only available after the context manager has finished without a
passing exception.

	
class aiocouch.bulk.BulkUpdateOperation(database, ids=[], create=False)

	A context manager for bulk update of documents. In particular, for every provided
id, a Document instance is provided. The data is fetched
using the AllDocsView with a minimal amount of requests.

	Parameters

	
	database (Database) – The database of the bulk operation

	ids (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – list of document ids

	create (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, every document contained in ids that doesn’t
exist, will be represented by an empty
Document instance.

	
error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Document]]

	The list of all Document instances that could not
be saved to server.

Only available after the context manager has finished without a
passing exception.

	
ok: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Document]]

	The list of all Document instances that there
successfully saved to server.

Only available after the context manager has finished without a
passing exception.

	
response: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]

	The resulting JSON response of the _bulk_docs [https://docs.couchdb.org/en/stable/api/database/bulk-api.html#api-db-bulk-docs]
request. Refer to the CouchDB documentation for the contents.

Only available after the context manager has finished without a
passing exception.

Exceptions

Most errors you encounter in aiocouch stem from HTTP request to the CouchDB server. Most of those
are therefore captured an transformed into exceptions. There might still be other errors, however
those should not be encountered under normal operation.

For further details, what can cause individual status codes, see also HTTP Status codes [https://docs.couchdb.org/en/stable/api/basics.html#errors].

	
exception aiocouch.BadRequestError

	Represents a 400 HTTP status code returned from the server

	
exception aiocouch.ConflictError

	Represents a 409 HTTP status code returned from the server

	
exception aiocouch.ExpectationFailedError

	Represents a 417 HTTP status code returned from the server

	
exception aiocouch.ForbiddenError

	Represents a 403 HTTP status code returned from the server

	
exception aiocouch.NotFoundError

	Represents a 404 HTTP status code returned from the server

	
exception aiocouch.PreconditionFailedError

	Represents a 412 HTTP status code returned from the server

	
exception aiocouch.UnauthorizedError

	Represents a 401 HTTP status code returned from the server

	
exception aiocouch.UnsupportedMediaTypeError

	Represents a 415 HTTP status code returned from the server

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 aiocouch	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | V

_

 	
 	__aiter__() (aiocouch.bulk.BulkOperation method)

 	
 	__getitem__() (aiocouch.CouchDB method)

 	(aiocouch.database.Database method)

A

 	
 	
 aiocouch

 	module

 	akeys() (aiocouch.database.Database method)

 	
 	all_docs (aiocouch.database.Database property)

 	append() (aiocouch.bulk.BulkOperation method)

 	Attachment (class in aiocouch.attachment)

 	attachment() (aiocouch.document.Document method)

B

 	
 	BadRequestError

 	BaseChangeEvent (class in aiocouch.event)

 	
 	BulkCreateOperation (class in aiocouch.bulk)

 	BulkOperation (class in aiocouch.bulk)

 	BulkUpdateOperation (class in aiocouch.bulk)

C

 	
 	ChangedEvent (class in aiocouch.event)

 	changes() (aiocouch.database.Database method)

 	check_credentials() (aiocouch.CouchDB method)

 	close() (aiocouch.CouchDB method)

 	ConflictError

 	
 	copy() (aiocouch.document.Document method)

 	CouchDB (class in aiocouch)

 	create() (aiocouch.bulk.BulkOperation method)

 	(aiocouch.CouchDB method)

 	(aiocouch.database.Database method)

 	create_docs() (aiocouch.database.Database method)

D

 	
 	data (aiocouch.document.Document property)

 	database (aiocouch.event.ChangedEvent attribute)

 	Database (class in aiocouch.database)

 	delete() (aiocouch.attachment.Attachment method)

 	(aiocouch.database.Database method)

 	(aiocouch.document.Document method)

 	
 	DeletedEvent (class in aiocouch.event)

 	doc() (aiocouch.event.ChangedEvent method)

 	docs() (aiocouch.database.Database method)

 	Document (class in aiocouch.document)

E

 	
 	error (aiocouch.bulk.BulkCreateOperation attribute)

 	(aiocouch.bulk.BulkOperation attribute)

 	(aiocouch.bulk.BulkUpdateOperation attribute)

 	
 	etag (aiocouch.remote.HTTPResponse property)

 	exists (aiocouch.document.Document property)

 	exists() (aiocouch.attachment.Attachment method)

 	ExpectationFailedError

F

 	
 	fetch() (aiocouch.attachment.Attachment method)

 	(aiocouch.document.Document method)

 	
 	find() (aiocouch.database.Database method)

 	ForbiddenError

G

 	
 	get() (aiocouch.database.Database method)

H

 	
 	headers (aiocouch.remote.HTTPResponse attribute)

 	
 	HTTPResponse (class in aiocouch.remote)

I

 	
 	id (aiocouch.event.BaseChangeEvent property)

 	index() (aiocouch.database.Database method)

 	
 	info() (aiocouch.CouchDB method)

 	(aiocouch.database.Database method)

 	(aiocouch.document.Document method)

J

 	
 	json (aiocouch.document.Document property)

 	(aiocouch.event.BaseChangeEvent attribute)

 	(aiocouch.event.DeletedEvent attribute)

K

 	
 	keys() (aiocouch.CouchDB method)

M

 	
 	
 module

 	aiocouch

N

 	
 	NotFoundError

O

 	
 	ok (aiocouch.bulk.BulkCreateOperation attribute)

 	(aiocouch.bulk.BulkOperation attribute)

 	(aiocouch.bulk.BulkUpdateOperation attribute)

P

 	
 	PreconditionFailedError

R

 	
 	response (aiocouch.bulk.BulkCreateOperation attribute)

 	(aiocouch.bulk.BulkOperation attribute)

 	(aiocouch.bulk.BulkUpdateOperation attribute)

 	
 	rev (aiocouch.document.Document property)

 	(aiocouch.event.BaseChangeEvent property)

S

 	
 	save() (aiocouch.attachment.Attachment method)

 	(aiocouch.document.Document method)

 	
 	sequence (aiocouch.event.BaseChangeEvent property)

 	status (aiocouch.bulk.BulkOperation property)

 	(aiocouch.remote.HTTPResponse attribute)

U

 	
 	UnauthorizedError

 	UnsupportedMediaTypeError

 	
 	update() (aiocouch.bulk.BulkOperation method)

 	update_docs() (aiocouch.database.Database method)

V

 	
 	values() (aiocouch.database.Database method)

 nav.xhtml

 Table of Contents

 		
 Welcome to aiocouch

 		
 Introduction

 		
 Session

 		
 Examples

 		
 Reference

 		
 CouchDB

 		
 Databases

 		
 Getting a Database instance

 		
 Creating new databases

 		
 Listing documents

 		
 Reference

 		
 Database

 		
 BaseChangeEvent

 		
 ChangedEvent

 		
 DeletedEvent

 		
 Documents

 		
 Getting a Document instance

 		
 Creating new Documents

 		
 Modify existing documents

 		
 Using Async Context Managers

 		
 Document Context Manager Example

 		
 Security Document Context Manager Example

 		
 Conflict handling

 		
 Reference

 		
 Document

 		
 HTTPResponse

 		
 Attachments

 		
 Getting an Attachment instance

 		
 Retrieving the Attachment content

 		
 Saving the content of an attachment

 		
 Reference

 		
 Attachment

 		
 Design docs and views

 		
 Bulk operations

 		
 Include documents in bulk operations

 		
 Create many documents in one operation

 		
 Update many documents in one operation

 		
 Error handling for bulk operations

 		
 Reference

 		
 BulkOperation

 		
 BulkCreateOperation

 		
 BulkUpdateOperation

 		
 Exceptions

 		
 BadRequestError

 		
 ConflictError

 		
 ExpectationFailedError

 		
 ForbiddenError

 		
 NotFoundError

 		
 PreconditionFailedError

 		
 UnauthorizedError

 		
 UnsupportedMediaTypeError

_static/file.png

_static/minus.png

_static/plus.png

